Identifying the Major On-farm Factors Associated with Elevated Free Fatty Acids (FFA) in Dairy Cows' Milk

Hannah Woodhouse, BSc, MSc Candidate

Population Medicine Department, University of Guelph,
Ontario, Canada

National Mastitis Council (NMC) Technology Transfer Session (TTS), 2021 NMC Virtual Annual Meeting

Background Milk Fat Composition

- Milk contains approximately 4% fat
- Milk fat is in globule form
- 98% of milk fat are triglycerides (TAGs) contained inside each milk fat globule (MFG)
- An outer MFG membrane acts as protection from *lipolytic* enzymes

Background Free Fatty Acids (FFAs)

- FFAs are products of TAG lipolysis
 - Spontaneous and/or induced
- Levels should be minimal in milk fat
 - 0.1% of milk fat are FFAs
 - 0.5-1.2mmol/100g of fat

Background FFA Concerns

- 1.2mmol/100g fat is sensory threshold for FFA
- Consumer concerns:
 - Milk not frothing
 - Cheese not coagulating
 - Milk tasting rancid
- Producer concerns:
 - Milk quality
 - Milk shipment
- Industry concerns!

DFO FFA Testing

 Dairy Farmers of Ontario (DFO) started testing FFAs in each Ontario bulk tank milk sample in 2017

Ontario Bulk Tank Milk FFAs (2017/18)

DFO FFA Testing

High FFA herds seem to experience more fluctuations

12 Month Sampling of Ontario Bulk Tank Milk FFAs for High and Low Herds (2017/18)

Current Literature

- Most research comes from Europe (Wiking et al, 2017 & 2019)
 - Milking system
 - Milking frequency
 - Milk Components
 - Health status
 - Fat supplements

Herd factors influencing free fatty acid concentrations in bulk tank milk

Lars Wiking¹, Martin Bjerring², Mette Marie Løkke¹, P. Løvendahl³ and T. Kristensen⁴

Impact of Milking Frequencies on the Level of Free Fatty Acids in Milk, Fat Globule Size, and Fatty Acid Composition

L. Wiking, J.H. Nielsen, A.-K. Båvius, A. Edvardsson, K. Svennersten-Sjaunja

Department of Food Science, Danish Institute of Agricultural Sciences, Research Centre Foulum, DK-8830 Tjele Denmark

^T Department of Animal Nutrition and Management, Kungsängens Research Centre, Swedish University of Agricultural Sciences, 753 23 Uppsala, Sweden L. STÁDNÍK et al.: Milk components and free fatty acid content, Mljekarstvo 65 (1), 18-25 (2015)

Original scientific paper - Izvorni znanstveni rad

UDK: 637.046

Relations between basic milk components and free fatty acid content in Holstein cow milk as lipolysis parameter

doi: 10.15567/mljekarstvo.2015.0103

Luděk Stádník¹*, Jaromír Ducháček¹, Renáta Toušová¹, Jan Beran¹, Martin Ptáček¹, Lenka Kouřimská²

796

Bulgarian Journal of Agricultural Science, 22 (No 5) 2016, 796–803 Agricultural Academy

MILK FAT FREE FATTY ACIDS IN DEPENDENCE ON HEALTH OF DAIRY COWS

- O. HANUй, M. KLIMEŠOVÁ¹, P. ROUBAL¹, E. SAMKOVÁ², D. FALTA³, M. ŠLACHTA², L. HASOŇOVÁ² and I. NĚMEČKOVÁ¹
- ¹ Dairy Research Institute Ltd., 160 00 Prague 6 Vokovice, Czech Republic
- ² University of South Bohemia České Budějovice, Faculty of Agriculture, 370 05 České Budějovice, Czech Republic
- ³ Mendel's University in Brno, 613 00 Brno, Department of Animal Rearing and Breeding, Agronomical Faculty, Czech Republic

Current Literature

- FFAs are multifactorial
- FFAs stem from:

COW FACTORS

MILK HARVEST

POST-HARVEST

TRANSPORTATION

- Breed
- Lactation stage
- Components
- Nutrition

- Milking system
- Milking frequency
- Pump type
- Air admission
- Pipelines (layout, diameter, turns)

- Plate coolers
- Bulk tank cooling and agitation
- Buffer tanks

• 555

On-farm factors

Undergraduate Research 2019 *Objective and Hypothesis*

UNIVERSITY BAGUELPH
CANADA'S DAIRY UNIVERSITY
CANADA'S DAIRY UNIVERSITY

Objective: To identify the major onfarm risk factors associated with elevated FFAs in milk

Hypothesis:

- 1. Milking system
 - Automated milking systems
- 2. Fat additives in ration
 - Palm fat
- 3. Pipeline diameter
 - Narrow

Undergraduate Research 2019Methods

Obtain purposive sample of dairy farms

Visit farms to conduct producer questionnaire and pipeline recording

Request farm-specific milk records from DFO

Analyze data to determine major factors

Undergraduate Research 2019 Results

- 49 farms analyzed between July 10-Oct. 8/19
- 34.7% of farms are above suggested sensory threshold

UNIVERSITY OF GUELPH CANADA'S DAIRY UNIVERSITY CANADA'S DAIRY UNIVERSITY

Undergraduate Research 2019 Results

- 14 tie stall
- 27 parlor
- 8 robotic

 No significant differences in FFA between milking systems (p=0.2617)

Undergraduate Research 2019 Results

. . .

 The use of fat supplementation was not significantly associated with FFAs (p=0.2696)

Undergraduate Research 2019 Results

UNIVERSITY AT GUELPH CANADA'S DAIRY UNIVERSITY CANADA'S DAIRY UNIVERSITY

Undergraduate Research 2019 Results

• Narrow barn pipeline diameter (1") was significantly associated with elevated FFAs (p=0.0941)

Multivariable Analysis (Adjusted R²) Barn pipeline diameter

Additional cooling

Undergraduate Research 2019 Results

Additional Cooling
 (plate coolers, tube
 coolers, chillers) was
 significantly
 associated with lower
 FFAs (p=0.014)

Multivariable Analysis (Adjusted R²) Barn pipeline diameter

Additional cooling

Barn pipeline

Undergraduate Research 2019 Results

Adjusted R² value= 22%

diameter Multivariable **Analysis** (Adjusted R²) Additional cooling

Interpretation: A narrow barn pipeline diameter and absence of additional cooling can explain elevated amounts of FFAs in 22% of sampled Ontario Dairy **Farms** 16

FFA Research 2020

- Inclusion criteria expanded
 - 200+ Ontario dairy farms
 - Not specific to feed company

- Time Temperature Recorder (TTR) data collection
 - Cooling, agitation, cleaning, alarms

Conclusion

- Elevated FFAs impair milk quality
- Current provincial research aims to identify the major on-farm factors associated with elevated FFAs
- Research results will be communicated with the industry and producers
 - Implemented changes to CQM program?
- Future research:
 - Milk processing effect on FFAs
 - Human health implications?

Acknowledgements

- Dr. David Kelton
- National Mastitis Council

- Dairy Farmers of Ontario
 - Guy Seguin

CanWest DHI

- Elora Dairy Research center
- Karen Hand
- Looknauth Ramsahoi
- Art Hill
- U of G President's Scholar committee

References

Deeth, H. (2011). Milk Lipids | Lipolysis and Hydrolytic Rancidity. Encyclopedia of Dairy Sciences. 721–726.

Hanuš, O., Klimesova, M., Roubal, P., Smaoka, E., Falta, D., Šlachta, M....&Nemeckova, I. (2016). Milk free fatty acid in dependence on health in dairy cows. *Bulgarian Journal of Agricultural Science*, **22**(5), 796-803.

Hanuš, O., Vegricht, J., Frelich, J., Macek, A., Bjelka, M., Louda, F. and Janů, L. (2008). Analysis of raw cow milk quality according to free fatty acid contents in the Czech Republic. *Czech Journal of Animal Science*. **53**(1), 17–30.

Hermansen, J. E., Larsen, T., & Andersen, J. O. (1995). Does zinc play a role in the resistance of milk to spontaneous lipolysis?. *International Dairy Journal*, **5**(5), 473-481.

Jensen, R., Ferris, A. and Lammi-Keefe, C. (1991). The composition of milk fat. J. Dairy Sci. 74(9), 3228-3243.

Kamath, S., Wulandewi, A. and Deeth, H. (2008). Relationship between surface tension, free fatty acid concentration and foaming properties of milk. *Food Research International.* **41**(6), 623-629.

Månsson, H. L. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research. 52(1), 1821.

Needs, E. C., & Anderson, M. (1984). Lipid composition of milks from cows with experimentally induced mastitis. *The Journal of dairy research*, **51**(2), 239–249.

Rasmussen, MD., Wiking, L., Bjerring, M. and Larsen, HC. (2006). Influence of air intake on the concentration of free fatty acids and vacuum fluctuations during automated milking. *J. Dairy Sci.* **89**, 4596-4605.

Wiking, L., Bjerring, M., Løkke, M. M., Løvendahl, P. and Kristensen, T. (2019). Herd factors influencing free fatty acid concentrations in bulk tank milk. *J. Dairy Sci.* **86**(2), 226–232.

Wiking, L., Björck L. and Nielsen JH. (2003). Influence of feed composition on stability of fat globules during pumping of raw milk. *International Dairy Journal*. **13**, 797–803.

Wiking, L., Nielsen JH., Bavius, A., Edvardsson, A. and Svennersten-Sjaunja, K. (2006). Impact of milking frequencies on the level of free fatty acids in milk, fat globule size, and fatty acid composition. *J. Dairy Sci.* **89**(3), 1004-1009.

Questions?

Hannah Woodhouse

BSc. BIOM, MSc. POPM Candidate

woodhouh@uoguelph.ca

